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________________________________________________________________________________________________ 
Abstract: This essay seeks to investigate the application of Group Theory in understanding molecular 
bonds, focusing on enhancing knowledge of molecular structure, properties, and reactivity. It also 
provides novel approaches to long-standing problems in molecular representation and analysis. This work 
intends to further elucidate the basic principles of Group Theory and its relevance in the study of 
molecular bonding, demonstrate how Group Theory can be applied to analyze the symmetry and 
vibrational properties of molecules and investigate the role of Group Theory in predicting molecular 
electronic spectra and bonding patterns. This knowledge will be beneficial for chemists in designing 
molecules for various fields like materials science, pharmaceuticals, and renewable energy. This 
knowledge can be invaluable for chemists in designing new molecules with specific properties and 
reactivity, ultimately contributing to the advancement of various fields such as materials science, 
pharmaceuticals, and renewable energy. 
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________________________________________________________________________________________________ 

INTRODUCTION 
Chemistry relies on the concepts of symmetry and group theory to analyze molecular structure In 
chemistry, molecular bonding is a basic idea, It describes how atoms combine to create molecules. The 
study of molecular bonding has evolved over time, with various theories and models providing insights 
into the nature of chemical bonds. Among these, Group Theory has emerged as a powerful tool for 
understanding the symmetry and behavior of molecules. Symmetry and beauty go hand in one. Most of 
what nature has created is symmetrical. i.e., Plants and animals are planets of the sun. Symmetry can 
be found in molecules, crystalline substances, and geometric shapes. More symmetrical entities are those 
that have more symmetry elements. Because all of a square's sides are equal while opposite sides of a 
rectangle are equal, a square is said to be more symmetrical than a rectangle. Square has more symmetry 
components and symmetry operations than other shapes, therefore one can conclude that it is more 
symmetrical numerically. This paper aims to explore the application of Group Theory in the realm of 
molecular bonding, with the objective of enhancing our understanding of molecular structure, properties, 
and reactivity. 

SOME OF THE KEY CONCEPTS 

SET 
Any well-defined group of items known as elements of S constitutes a set S. If an element 𝑥 belong to S 
we then write 𝑥 ∈ 𝑆, if 𝑥 is not in S we write 𝑥 ∉ 𝑆. 
AXIOMS 
 A postulate or axiom is a claim that is evident or well- established, and can serve as the foundation for 
an argument or additional line of reasoning. The Greek language is where the word originated. ‘axioma’ 
which mean that which is thought ‘worthy or fit’ or ‘that which commands itself as evident.’ 
BINARY OPERATION 
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An assignment that combines two components of a set (referred to as operations) to create an element of 
the set (technically, an operation with two arities whose two domains and one codomain are (subsets of) 
the same set) is called a binary operation on a set. The common elementary arithmetic operations of 
addition and multiplication are two examples. 
Additional instances can be easily located in other mathematical domains, including vector addition, 
matrix multiplication, and group conjugation. 
GROUP 
Let (G,∗) be an algebraic structure, where ∗ is an operation that is binary. Then (G,∗) is called a group 
under this condition if the following axioms are satisfied  
i. closure law: 
𝐺 is closed under the operation ∗, that is, to each ordered pair 𝑎, 𝑏 ∈ 𝐺, There is a special component 𝑎 ∗

𝑏 ∈ 𝐺 
 ii. Associativity law:  
The associative binary operation *, that is, 
(𝑎 ∗ 𝑏) ∗ c = 𝑎 ∗ (𝑏 ∗ c), ∀ a, b, c ∈ G. 
iii. Identity′s existence element: 
There exists an element 𝑒 ∈ 𝐺 (called identity element of G) such that  
𝑎 ∗ 𝑒 = 𝑒 ∗ a = a, ∀ a ∈ G. 
iv. The presence of the inverse element for each element in G: 
To each a ∈ G, 
 There is an element 𝑎ିଵ ∈ G (called an inverse of a with respect to ∗) such that 
𝑎 ∗ 𝑎ିଵ = 𝑎ିଵ ∗ a = e 
SUBGROUP OF A GROUP 
A subgroup of a group G is defined as a non-empty subset H of the group G, if H itself is a group with 
respect to the binary procedure on G. Clearly every group is a subgroup of itself. 
INSIGNIFICANT GROUP 
An insignificant group is one that has just one element in it. The single element of the trivial group is the 
identity element and also it is usually denoted as 0, 1 or 𝑒 depending on the context. The group operation 
is defined if it has the symbol *. by 𝑒 ∗ 𝑒 = 𝑒.  
PROPER SUBGROUP 
A proper subgroup is a proper subset of a group meeting the four criteria for group membership.  
That is, if 𝐺 is a group, all other subgroups of 𝐺 are proper subgroups except 𝐺 itself. 
ABELIAN GROUP 
A group in which the outcome of performing the group operation to two group members is independent of 
the order in which they are written is known as an abelian group, also known as a commutative group 
(the axiom of commutativity). 
GENERATOR OF A GROUP 
An element is a group's generator. If it’s powers make up the elements of the group. 
CYCLIC GROUP 
Groups known as cyclic groups have all of their elements being powers of a single fixed element. i.e G = 
< 𝑎 >= {𝑎௡|𝑛 ∈ ℤ}. That is, a group G is cyclic if G is generated by one of its elements. 
1.2.11. Cyclic subgroup 
The set 𝐻 = {𝑔௥ ∣ 𝑟 = 0 ± 1 ± 2 ± ⋯ } is evidently a subgroup of G known as the cyclic subgroup of G, which 
is produced by 𝑔.  
i.e 𝐻 = < 𝑔 >≤ 𝐺.  
NORMAL SUBGROUP 
If a group G's subgroup H is a normal subgroup of G, then 𝐻𝑎 = 𝑎𝐻 ∀ 𝑎 ∈ 𝐺 
GROUP ACTION 
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Let S be a nonempty set and G be a group. Then G is said to act on S if there is an operation G × S → S 
(usually denoted by (𝑔, 𝑠)𝜑 → 𝑔𝑠) such that 𝑒𝑠 = 𝑠 and (𝑔ℎ)𝑠 = 𝑔(ℎ𝑠) ∀ 𝑠 ∈ 𝑆 𝑎𝑛𝑑 𝑔, ℎ ∈ 𝐺. 
ORDER OF A GROUP 
The total number of elements in a group determines its order. This implies that the order of a group is 
the cardinality of the underlying set of the group. It is denoted by ∣G∣. 
AN ELEMENT'S ORDER 
Suppose 𝐺 is a group where the operation is denoted multiplicatively. 
Then the arrangement of an element 𝑎 ∈ 𝐺 is the least positive integer n such that 
 𝑎௡ = 𝑒 = 1 𝑜𝑓 𝐺. The order of an element 𝑎 in group G is denoted as 𝑜(𝑎). 
CENTER OF THE COLLECTIVE 
The set ℤ of all self-conjugate elements of a group G is called the center of G.Symbolically   ℤ = {𝑧 ∈ 𝐺 ∣

𝑎𝑧 = 𝑧𝑎 ∀ 𝑎 ∈ 𝐺}.  
CONJUGATE ELEMENT 
If G is a group and 𝑎, 𝑏 ∈ 𝐺, 𝑡ℎ𝑒𝑛 𝑏 is said to be conjugate to 𝑎 if there exist an element 𝑥 ∈ 𝐺 such that 
𝑏 = 𝑥ିଵ𝑎𝑥. 
If 𝑏 = 𝑥ିଵ𝑎𝑥, then 𝑏 is also called the transformation of 𝑎 by 𝑥.  
Symbolically we write 𝑏~𝑎 and this relation in G is called conjugacy. 
CONJUGATE OF TWO SUBGROUP 
Let 𝑔, ℎ be elements of a group 𝐺. 
We say 𝑔 𝑎𝑛𝑑 ℎ are conjugate if there exists 𝑥 ∈ 𝐺 with ℎ = 𝑥𝑔𝑥ିଵ. 
Let 𝐻ଵ, 𝐻ଶ be subgroups of G. we say 𝐻ଵ, 𝑎𝑛𝑑 𝐻ଶ are conjugates if there exists  
an 𝑥 ∈ 𝐺 with 𝑥𝐻ଶ𝑥ିଵ = 𝐻ଵ. 
RIGHT COSET AND LEFT COSET 
If G is a group. And  H is a subgroup of a group 𝐺, and 𝑔 is an element of G then the set  
(i) 𝐻𝑔 = {ℎଵ, ℎଶ, ℎଷ, … , ℎ௡}𝑔 = {ℎଵ𝑔, ℎଶ𝑔, ℎଷ𝑔, … , ℎ௡𝑔} 
where 𝐻 = {ℎଵ, ℎଶ, ℎଷ, … , ℎ௡}is called the right coset of H in G generated by 𝑔 
(ii) 𝑔𝐻 = 𝑔{ℎଵ, ℎଶ, ℎଷ, … , ℎ௡} = {𝑔ℎଵ, 𝑔ℎଶ, 𝑔ℎଷ, … , 𝑔ℎ௡} 
 where 𝐻 = {ℎଵ, ℎଶ, ℎଷ, … , ℎ௡} is called the left coset of H in G with respect to 𝑔. 
STABILIZER  
Let G be a group and Ω be a set, 
 (i) if 𝛼 ∈ 𝛺, we define the stabilizer of 𝛼 (in some context called the isotopy subgroup) by 
 G஑ = { g ∈ G ∣∣ α୥ = α } = stab (α) 
(ii) if α ∈ Ωwe define αୋ(or αୋ where G consist of mapping of Ω) by 
𝛼ீ = {𝛼௚ ∣ 𝑔 ∈ 𝐺}. And is called the G-orbit that contains 
𝛼 (or simply the orbit of 𝛼). 
SYMMETRY  
The Greek word "symmetry," which meaning "measure together," is where the word "symmetry" 
originates. 
POINT GROUPS 
point groups have symmetry about a single point at the center of mass of the system. 
SYMMETRY ELEMENTS 
Geometric entities such as points, lines, and molecules' planes that can be the subject of symmetry 
operations including rotations, reflections, inversions, and improper rotations are known as symmetry 
elements. 
 

REVIEW OF LITERATURE 
A fundamental idea in chemistry is chemical bonding. Additionally, learners are expected to comprehend 
a wide variety of symbolic representations for chemical bonding in this topic area, where comprehension 
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is formed through varied models that are in turn built upon a range of physical concepts. One may say 
that the study of chemistry is concerned with the characteristics and interactions of substances. Many 
chemical and physical properties of substances, including basic ones like whether they are solids, liquids, 
or gases at a particular temperature and pressure, are explained by the nature of the bonds that bind the 
particles together. Substances are commonly thought of as aggregations (or combinations) of particles. 
Chemical change is the reorganization of the constituent particles of the reactants into new configurations 
that define and are characteristic of the products. Stated differently, chemical reactions entail the 
disruption and reconstruction of chemical bonds. Another important factor is the relative bond strengths 
of reactants and products.  
The central importance of chemical bonding to the subject is well recognised (Fensham, 1975), and is such 
that it is considered a core topic in many chemistry curricula at school, college and university level. 
However, it is also a topic where learners commonly develop a wide range of alternative conceptions 
(Taber 2001a). 
Students arrive in science classrooms with a variety of counterarguments to accepted scientific theories 
(e.g., Pfundt & Duit, 1998; Driver et al., 1994), which could impede the desired learning process. In some 
topics within science, these alternative ideas may be understood to originate largely from ‘intuitive’ 
interpretations of early experience (e.g., Gilbert & Zylbersztajn, 1985), or to be acquired from folk-science 
(e.g., Solomon, 1993) and everyday meanings of technical words (e.g., Watts & Gilbert, 1983). It is possible 
to understand common alternate notions about subjects like forces and motion, plant nourishment, and 
energy to originate from these sources. These kinds of justifications, however, fall short when one 
considers how students come up with alternate theories regarding something as abstract as chemical 
bonding, which is outside the realm of their immediate experience and is unlikely to be covered in casual 
conversations. 
One reason why students find this topic challenging is the variety and complexity of the scientific models 
that chemists use to understand chemical bonding. At an initial level, many of the concepts needed to 
comprehend chemical bonding would be inaccessible. Instead, curricula models need to be used which 
simplify the topic (Gilbert, 1998). Ideally learners will develop their ‘tool kit’ of bonding concepts as part 
of their progression in learning about the subject (Taber, 1995). 
When teaching models are developed they should reflect an optimum level of simplification (Taber, 2000), 
that is they should be kept as simple as is possible whilst still being scientifically ‘authentic’ (so that they 
provide a suitable basis for being developed at a later stage in the learner’s chemical education). If an 
attempt is made to simplify a difficult subject without considering how such a move might be made, it 
may hinder effective learning and lead to the emergence of some popular misconceptions. It is possible to 
understand how some of the alternate ideas that students frequently pick up about chemical bonding 
come from this. 
 

METHODOLOGY 
We are now prepared to present the formal mathematical definition of a group after going over some of 
the fundamental vocabulary related to symmetry operations, elements, and their behaviour inside point 
groups. 
Lemma 3.2.  
Let G be a collective and H  ⊆ 𝐺. 
For each right coset of H in G, then H has the same cardinality. 
Proof: 
Let Hg be a  right coset of H in G and define 
 𝜑: 𝐻 ⟶ 𝐻𝑔 by 𝜑(ℎ) = ℎ𝑔  
Then 𝜑(ℎଵ) = 𝜑(ℎଶ) ,   ⟹ ℎଵ𝑔 = ℎଶ𝑔 
(by cancellation law) 
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ℎଵ = ℎଶ 
hence 𝜑 is 1 − 1 
Now we have to show that φ is onto. 
Take 𝑦 ∈ 𝐻𝑔 then 𝑦 = ℎ𝑔 for some ℎ ∈ 𝐻. 
Then 𝜑(ℎ) = ℎ𝑔 = 𝑦. Thus 𝜑 is onto.  
Since 𝜑 is 1 − 1 and onto then 𝜑 is a bijection. 
Thus |𝐻| = |𝐻𝑔|. 
Theorem 3.3 
Let 𝐺 be a finite group of order 𝑛, and 𝐻 a subgroup of 𝐺 
Then |𝐻| divides |𝐺| 
Proof: 
Let 𝐻𝑎ଵ, 𝐻𝑎ଶ, … , 𝐻𝑎௞ be the right cosets of H in G. 
By lemma 2.1  
𝐺 = 𝐻𝑎ଵ ∪ 𝐻𝑎ଶ ∪ 𝐻𝑎ଷ ∪, … ,∪ 𝐻𝑎௞ 
and union is disjoint. 
⟹ |𝐺| = |𝐻𝑎ଵ ∪ 𝐻𝑎ଶ ∪ 𝐻𝑎ଷ ∪, … ,∪ 𝐻𝑎௞| = |𝐻𝑎ଵ| + |𝐻𝑎ଶ| + ⋯ + |𝐻𝑎௞| . 
∵ the union is disjoint 
= |𝐻| + |𝐻| + ⋯ + |𝐻| 
By lemma 2.1 
𝑘|𝐻| holds 
So |𝐻| ∣ |𝐺|. 
Where 𝑘 is the number of distinct right cosets of 𝐻 in 𝐺. 
Theorem 3.4 
The equation  x୥ = e is satisfied by every element x in a finite group of rank g. 
Proof: 
The order m of x is a divisor of g say g = mq. 
This gives 𝑥௚ = 𝑥௠௤ = (𝑥௠)௤ 
𝑒௤ = 𝑒 
The proof is now complete. 
Theorem 3.5  
Let G be a group of prime order. Then G is cyclic. 
Proof: 
Let G be a group with prime order 𝑝 where 𝑝 is a prime.  
And let 𝑔 ∈ 𝐺 ∋ 𝑔 ≠ 𝑒. 
Let m be the cyclic subgroup formed by g in order. 
Any subgroup of G has order dividing p, that is either of order 1 or p.  
That is, 𝑚 divides 𝑝.  
As 𝑝 is prime, we have that 𝑚 = 𝑝 and so 𝐺 = < 𝑔 > 
Lemma 3.6 
Let 𝑃 be a sylow 𝑃 −subgroup of 𝐺. 
 If  𝑔 ∈ 𝐺 has order a power of 𝑝 and 𝑔𝑝𝑔ିଵ = 𝑝 then 𝑔 ∈ 𝑃. 
Proof: 
Note that 𝑔 ∈ 𝑁(𝑃). 
Consider the group 𝑁(𝑃)|𝑃. 
The coset 𝑝𝑔 also has order a power of 𝑝, and generates a cyclic subgroup 𝑄 of  𝑁(𝑃)|𝑃 of that order. 
We know from correspondence of subgroups that there is a subgroup 𝐻 of 𝐺 such that 
𝐻|𝑃 = 𝑄.  
The order of 𝐻 equals |𝐻| ∙ |𝑄|, so also a power of 𝑃. 
But 𝑃 ⊆ 𝐻 is a Sylow 𝑝 − subgroup, so it must actually be equal to  𝐻. 



 
Volume: 04 | Issue: 03 | 2024 | Open Access | Impact Factor: 5.735 

 

 

International Journal of Current Researches 
in Sciences, Social Sciences and Languages 

18 All rights are reserved by IJCRSSSL. 

This means 𝑄 is the identity in 𝑁(𝑃)|𝑃, and  
Therefore 𝑝𝑔 = 𝑃, so 𝑔 ∈ 𝑃. 
Theorem 3.6 
If 𝑃 is any 𝑝-subgroup of 𝐺 and 𝐻 is any Sylow 𝑝 −subgroup of 𝐺, then there exists 𝑥 ∈ 𝐺 such that 𝐻 ⊆

𝑥𝑝𝑥ିଵ. 
Proof: 
Let 𝑆 be the left coset of 𝑝 in 𝐺 and let 𝐻 act on 𝑆 by left multiplication.  
If 𝑋 is the set of 𝐻-stable elements of 𝑆 then since 𝐻 is a 𝑃 −group we have 
|𝑆| = |𝑋|modp. 
Since |S| = |G: P| is not divisible by 𝑝 neither is |X|. 
Thus 𝑋 ≠ ∅. 
Let 𝑥𝑝 ∈ 𝑋. 
Then ℎ𝑥𝑝 = 𝑥𝑝 for all ℎ ∈ 𝐻.  
That isℎ𝑥 ∈ 𝑥𝑝, or ℎ ∈ 𝑥𝑝𝑥ିଵ.  
So H⊆ 𝑥𝑝𝑥ିଵ , another 𝑝 −Sylow subgroup of 𝐺. 
If 𝑄 is a 𝑝 −Sylow subgroup of 𝐺 then from the above argument we see that 
Q⊆ 𝑥𝑝𝑥ିଵ for some 𝑥 ∈ 𝐺. 
Thus  Q= 𝑥𝑝𝑥ିଵ 
Since |𝑄| = |𝑝| = |𝑥𝑝𝑥ିଵ| 
Thus 𝑄 is contained in some conjugate of every sylow 𝑝 −subgroup of 𝐺, which also implies that every 
Sylow 𝑝 −subgroup of 𝐺 is conjugate. 
 
Lemma 3.7 
If 𝐺 possess 𝑘 subgroups of order 𝑝, then it has 𝑘(𝑝 − 1) elements of order 𝑝. 
Proof: 
We know that 𝐺 have 𝑘 number of subgroups, each with size 𝑝, with identity {𝑒} belonging to each of these 
subgroups. That gives 𝑘(𝑝 − 1) number of elements. 
 Next, we have to eliminate the possibility that no other element belong to the intersection of two different 
subgroups of 𝐺.  
Precisely, if 𝐻 and 𝐾 are two different subgroups of 𝐺, then we claim that 
𝐻 ∩ 𝐾 = {𝑒}. 
Lagrange’s theorem can help in this part.  
We know that if 𝐻 ∩ 𝐾 ≠ {𝑒}, 
Say 𝐻 ∩ 𝐾 = 𝑙,  
This imply that 𝑙 is a generator for 𝐻 and 𝐾 and that mean that 
𝐻 = 𝐾 
Given that p is prime, H and K are inevitably produced. 
Consequently, no additional element is a part of 𝐻 ∩ 𝐾 except 𝑒 
Therefore 𝐺 has 𝑘(𝑝 − 1) elements of order 𝑝 

RESULTS AND DISCUSSION 
When a molecule moves in a symmetrical manner, the resultant configuration of the molecule cannot be 
distinguished from the original. Saying that a symmetry operation has the effect of putting the body in 
an equivalent or identical configuration is another approach to define it.  
A geometrical object, such as a line, lane, or point that can be the subject of one or more symmetry 
operations is called a symmetry element. There is a close relationship between symmetry elements and 
symmetry operations. The molecule should be used to carry out the symmetry operation. A minimum of 
one location within the molecule ought to remain unaltered by every symmetry operation. Here is where 
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the symmetry pieces all come together. As a result, the molecule does not move in translation while a 
symmetry operation is being performed. 
The symmetry elements and symmetry operations used in molecular symmetry are listed here, along 
with their corresponding symbols. 

S.No Symmetry element Symmetry operation Symbol 

1 Identity To leave the molecule unchanged 𝐸 

2 Axis of Symmetry Rotation by angle 𝜃 = ቀ
ଶஈ

௡
ቁ about the 

axis 

𝐶௡ 

3 Plane of Symmetry Reflection in a plane 𝛿 

4 Centre of symmetry Inversion of all atoms through the 
centre 

𝑖 

5 Improper axis of 
symmetry 

Rotation about the axis followed by 
reflection in a plane perpendicular to 

the rotational axis 

𝑆௡ 

From the table we shall discuss just few of the symmetry element as the rest can be shown in the same 
procedure. 
 Identity: An identity operation yields an orientation that is the exact same as the output of the 

original operation. This process involves doing nothing and leaving the molecule unaltered. Not only 
does the process provide an identical orientation, but it also produces one that is equal. The identity 
operation is actually a mathematical criterion rather than an operation. 

 Axis of symmetry: This is an axis around which the molecule rotates (clockwise rotation is one 

possible choice for this axis). +𝑡𝑖𝑣𝑒𝑠 and counter clockwise rotation as −𝑡𝑖𝑣𝑒𝑠) by an 𝜃 = ቀ
ଶஈ

௡
ቁ gives an 

equivalent configuration where 𝑛 is the order of the axis. Where n is the order of the axis. The order 
of axis may be two fold (C2), three fold (C3), four fold (C4), (C5), (C6) . . . (Cn). The axis with the 
highest order, if any, in a molecule with several axes of varying orders is called the principal axis of 
rotation. 
In water (H2O) molecule C2 (two fold) axis of rotation is present and rotates to create an equivalent 
configuration180º. 
In water (H2O) molecule C2 (two fold) axis of rotation is present and rotates to create an equivalent 
configuration180º. 
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𝐶ଷ

ଵ means one time rotation by an angle 120଴.  𝐶ଷ
ଶ mean two time rotation by an angle 120଴. while 𝐶ଷ

ଷ is 
the identity (after 𝐶ଷ

ଷ original configuration is obtained). 

𝐵𝐹ଷ molecule (𝐴𝐵ଷ type planar molecule) possess a three time fold (𝐶ଷ)  axis of rotation passing through 
𝐵 − 𝑎𝑡𝑜𝑚 and perpendicular to the plane of molecule. 

 
Furthermore to 𝐶ଷ, these compounds have three additional two-fold (𝐶ଷ) axes that are not parallel to the 
𝐶ଷ axis that goes through every fluorine atom and the boron atom. The axes are located in the molecule's 
plane. 



 
Volume: 04 | Issue: 03 | 2024 | Open Access | Impact Factor: 5.735 

 

 

International Journal of Current Researches 
in Sciences, Social Sciences and Languages 

21 All rights are reserved by IJCRSSSL. 

 
Cyclopentadienyl aniom 𝐶ଶ𝐻ହ

ି has four rotational axes and five folds i.e. 𝐶ଷ
ଵ, 𝐶ଷ

ଶ,  𝐶ଷ
ଷ, 𝐶ଷ

ସ and five two fold 
axis of rotation (5C2). 
The term "plane of symmetry" refers to an imaginary plane that splits a molecule in half so that the two 
halves are mirror reflections of one another. It should be mentioned that the reflection operation yields 
a configuration that is equal to the original. If the molecules undergo the procedure twice, the initial 
configuration is obtained (𝛿 ∙ 𝛿 = 𝛿ଶ = 𝐸). 

Three categories apply to the plane of symmetry:  
 Vertical plane (𝜹𝒗 ): A vertical plane is defined as the plane that crosses both the principal axis and 

one of the subsidiary axes, if any are present. 
 Horizontal plane (𝜹𝒉): A horizontal plane is a plane that is perpendicular to the principal axis. 
 Dihedral plane (𝜹𝒅) : The plane that cuts an angle between two subsidiary axes while passing 

through the principal axis (C2) known as the dihedral plane. 

The water molecule has two planes of symmetry i.e., 𝛿௬௭ 𝛿௫௭. One is cutting the angle in half by going 
through an oxygen atom ∠𝐻𝑂𝐻 i.e., 𝑦𝑧 plane called as 𝛿௬௭. The opposite plane of symmetry goes through 

two H-atoms and one oxygen atom. This is an 𝑥𝑧 plane and is called 𝛿௫௭. 
The molecule ammonia has three symmetry planes i.e. 3𝛿௩ Every rotation is made through a rotational 
axis. 𝑁 − 𝑎𝑡𝑜𝑚 and 𝐻 − 𝑎𝑡𝑜𝑚. 
In the event that 𝐵𝐹ଷ There are three (triangular planar) molecules 𝛿௩ plane, every one of which goes via 
the main axis (C3) and one of the C2 i.e., through 𝐵– 𝑎𝑡𝑜𝑚 and cutting the angle between the other two F-
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atoms and one of the fluorine atoms. 𝐵𝐹ଷ is planar molecule and hence plane of molecule is also a plane of 
symmetry. This is perpendicular to the principal axis and is denoted by 𝛿௛. 
Incase of 𝐵𝐹ଷ (triangular planar) molecule, there are three 𝛿௩ plane, each passing through the principal 
axis (C3) and one of the C2 i.e., through 𝐵– 𝑎𝑡𝑜𝑚 and one of the fluorine atom and bisecting the angle 
between other two 𝐹– 𝑎𝑡𝑜𝑚𝑠. 𝐵𝐹ଷ is planar molecule and hence plane of molecule is also a plane of 
symmetry. This is perpendicular to the principal axis and is denoted by 𝛿௛. 
Two 𝛿௩ plane passes through C4–axis Ni(II) ion and two CN– ion at opposite corners. To 𝛿 plane passes 
through Cu–axis, Ni(II) ion and between two CN– and is called σd. The molecular plane passing through 
Ni(h) ion and four CN– is σh. 
In hexagonal planar benzene molecule, six σv and one σh are present. 

 Center of inversion: A molecule's center point is referred to as the center of inversion if identical 
atoms are located there at equal distances on either side. Every homonuclear diatomic molecule has 
a symmetry center e.g., 〖CL〗_2, H_2, B_2 etc. 〖CO〗_2, C_2 H_2 ethylene trans dichloroethane, 
benzene, 〖[〖PtCl〗_4]〗^(--), [Ni(CN)4]– – etc. have a centre of symmetry. 

 Rotational-reflectional axis of symmetry or improper axis of symmetry (Sn): When combined 
with a rotation, this operation (𝐶௡) with a reflection (𝛿) in a plane that's the opposite of the rotational 
axis. It leaves the molecule in an indistinguishable configuration after this composite action.  

𝑆ଶ = 𝐶௡ ∙ 𝛿௡  
In the event that any molecule has 𝐶௡ and σh operations, after which it typically comprises 𝑆௡ . 
𝑆ଶ = 𝐶ଶ ∙ 𝛿௛ = 𝑖  
S2 is i became after the rotation by 180º and then reflection perpendicular to 𝐶ଶ produce 𝑖. 
𝑆ଷ = 𝐶ଷ ∙ 𝛿௛. 
𝐵𝐶𝑙ଷ contains 𝑆ଷ.  
𝐵𝐶𝑙ଷ molecule after 𝐶ଷ  and then 𝛿௛ ⊥ 𝐶ଷ produce indistinguishable configuration. 
As 𝐶𝑛 generates 𝑛 operations i.e., 𝐶௡

ଵ, 𝐶௡
ଶ, 𝐶௡

ଷ, ……… 𝐶௡
ସ (= 𝐸), 𝑆𝑛  also generates 𝑛 such 

operations when 𝑛 is even but generates 2n when n is odd. 
If n = odd 
i.e. 𝑛 = 3 
𝑆ଷ

ଵ = 𝐶ଷ
ଵ ∙ 𝛿௛

ଵ = 𝐶ଷ ∙ 𝛿௛  
𝑆ଷ

ଶ = 𝐶ଷ
ଶ ∙ 𝛿௛

ଶ = 𝐶ଷ
ଶ ∙ 𝐸 = 𝐶ଷ

ଶ  
𝑆ଷ

ଷ = 𝐶ଷ
ଷ ∙ 𝛿௛

ଷ = 𝐸 ∙ 𝛿௛
ଶ ∙ 𝛿௛ = 𝐸 ∙ 𝐸 ∙ 𝛿௛ = 𝛿௛  

𝑆ଷ
ସ = 𝐶ଷ

ସ ∙ 𝛿௛
ସ = 𝐶ଷ

ଷ ∙ 𝐶ଷ
ଵ ∙ 𝛿௛

ଶ ∙ 𝛿௛
ଶ = 𝐸 ∙ 𝐶ଷ

ଵ ∙ 𝐸 ∙ 𝐸 = 𝐶ଷ
ଵ.  

𝑆ଷ
ହ = 𝐶ଷ

ହ ∙ 𝛿௛
ହ = 𝐶ଷ

ଷ ∙ 𝐶ଷ
ଶ ∙ 𝛿௛

ଶ ∙ 𝛿௛
ଶ ∙ 𝛿௛ = 𝐸 ∙ 𝐶ଷ

ଶ ∙ 𝐸 ∙ 𝐸 ∙ 𝛿௛ = 𝐶ଷ
ଶ. 𝛿௛  

𝑆ଷ
଺ = 𝐶ଷ

଺ ∙ 𝛿௛
଺ = 𝐶ଷ

ଷ ∙ 𝐶ଷ
ଷ ∙ 𝛿௛

ଶ ∙ 𝛿௛
ଶ ∙ 𝛿௛

ଶ = 𝐸 ∙ 𝐸 ∙ 𝐸 ∙ 𝐸 ∙ 𝐸 = 𝐸  

Hence 𝑆ଷ generate two 𝑆ଷ
ଵ and 𝑆ଷ

ହ. Like this 𝑆ସ
ଵ and 𝑆ସ

ଷ. Writing all symmetry operations in a molecule. 

THE GROUP AND ITS FEATURES 
A collection of items connected by a set of rules is called a group. Our focus will be on the groups that 
result from sets of symmetry operations that can be applied to crystals or molecules. The prerequisites for 
a mathematical group are as follows: 
 Closure 
 Association 
 Identity 
 Inverse 
 Closure: Every element in the group must be an element in the group, as must the product of any 

two group components and the square of each element. The product of any element A and B produce 
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C.C must be element of the group. 
 

𝐴 ∙ 𝐵  𝐶  
𝐴ଶ 𝐷 

 𝐵ଶ    𝐸  
C,D and E must be element of the group. The order of combination is very important as AB is not 
necessarity equal to BA. 

If AB = BA, the members A and B are said to commutative. And if AB  BA, the members A & B are not 
commutative. The members of the group which are commutative form Abelian group. 

 Association: Associative multiplication is required. A(B∙C)  (A∙B)∙C  
 Identity: Every member of the group needs to commute with every other member and remain 

unchanged. This component is known as identity, and it is shown as E. Identity must be present in a 
group. E∙A =A∙E = A,E∙B = B∙E = B,A and B are elements of the group.  

 Inverse: Each individual in the group needs to have an inverse in order to be a part of it. A∙A^(-1)  = 
A^(-1)∙A = E  

A molecule's symmetry components make form a group. 

OUTCOME OF SYMMETRY PROCESSES 
A group is represented by the water molecule's collection of symmetry operations. The water molecule's 
overall symmetry operations include 𝐸, 𝐶ଶ , 𝛿௫௭, 𝛿௬௭. The requirements of a mathematical group are all met 

by these four symmetry operations. 

Rule a): 𝐶ଶ, 𝛿௫௭ = 𝛿௬௭ 

𝐶ଶ ∙ 𝐶ଶ = 𝐸  

Rule b): 𝐶ଶ. 𝐸 = 𝐶ଶ 

𝛿௫
௭ ∙ 𝐸 = 𝛿௫

௭  

Rule c): 𝐶ଶ ∙ 𝐶ଶ
ିଵ = 𝐸 

𝛿௫
௭ ∙ 𝛿௫௭

ିଵ = 𝐸  

Rule d): 𝐶ଶ ∙ ൫𝛿௫௭ ∙ 𝛿௬௭൯ = (𝐶ଶ ∙ 𝛿௫௭) ∙ 𝛿௬௭ 

⟹ 𝐶ଶ ∙ 𝐶ଶ = 𝛿௫௭ ∙ 𝛿௬௭  

⟹ 𝐸 = 𝐸  

The multiplicative table can be used to confirm their rules as well.  
Thus, the water molecule's multiplication table for symmetry operations i.e. for  𝐶ଶ௩ point group. 

Symmetry Operations 

𝐻ଶ𝑂(𝐶ଶ௩) 𝐸 𝐶ଶ 𝛿௫௭  𝛿௬௭ 

𝐸 𝐸 𝐶ଶ 𝛿௫௭  𝛿௬௭ 

𝐶ଶ 𝐶ଶ 𝐸 𝛿௬௭ 𝛿௫௭ 

𝛿௫௭ 𝛿௫௭ 𝛿௬௭ 𝐸 𝐶ଶ 

𝛿௬௭ 𝛿௬௭ 𝛿௫௭ 𝐶ଶ 𝐸 
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From the table we can see that it is a group for all the rows and columns there does not exist any elements 
appearing twice. Hence group postulate are satisfied. 
These are illustrated as: 

𝐸 ∙ 𝐶ଶ = 𝐶ଶ ∙ 𝐸 = 𝐶ଶ  

𝐸 ∙ 𝛿௫
௭ = 𝛿௫

௭ ∙ 𝐸 = 𝛿௫
௭  

𝐸 ∙ 𝛿௬
௭ = 𝛿௬

௭ ∙ 𝐸 = 𝛿௬
௭  

Multiplication table for symmetry operations of 𝑵𝑯𝟑 molecule i.e. for 𝑪𝟑𝒗 point group. 

𝑵𝑯𝟑(𝑪𝟑𝒗) 𝑬 𝑪𝟑
𝟏 𝑪𝟑

𝟐 𝜹𝒂 𝜹𝒃 𝜹𝒄 
𝐸 𝐸 𝐶ଷ

ଵ 𝐶ଷ
ଶ 𝛿௔ 𝛿௕ 𝛿௖ 

𝐶ଷ
ଵ 𝐶ଷ

ଵ 𝐶ଷ
ଶ 𝐸 𝛿௖ 𝛿௔ 𝛿௕ 

𝐶ଷ
ଶ 𝐶ଷ

ଶ 𝐸 𝐶ଷ
ଵ 𝛿௕ 𝛿௖ 𝛿௔ 

𝛿௔ 𝛿௔ 𝛿௖ 𝛿௕ 𝐸 𝐶ଷ
ଵ 𝐶ଷ

ଶ 
𝛿௕ 𝛿௕ 𝛿௔ 𝛿௖ 𝐶ଷ

ଶ 𝐸 𝐶ଷ
ଵ 

𝛿௖ 𝛿௖ 𝛿௕ 𝛿௔ 𝐶ଷ
ଵ 𝐶ଷ

ଶ 𝐸 
 
Thus this is a group. 

SUMMARY 
This paper explore the application of Group Theory in understanding molecular bonds, focusing on 
enhancing knowledge of molecular structure, properties, and reactivity. Hence elucidating Group 
Theory's principles, analyzing symmetry and vibrational properties of molecules, predicting electronic 
spectra, and guiding the design of new molecules. The paper involves a literature review and validation 
through experimental data and other models which outcomes include a comprehensive understanding of 
Group Theory's role in molecular bonding and insights into symmetry, vibrational properties, and 
electronic spectra. This knowledge will be beneficial for chemists in designing molecules for various fields 
like materials science, pharmaceuticals, and renewable energy. 

CONCLUSION 
The paper on the application of Group Theory in molecular bonding aims to provide a deeper 
understanding of the symmetry, vibrational, and electronic properties of molecules. This knowledge can 
be invaluable for chemists in designing new molecules with specific properties and reactivity, ultimately 
contributing to the advancement of various fields such as materials science, pharmaceuticals, and 
renewable energy. 
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